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Abstract: This paper presents a strategy for the optimization of biogas outflow rate in an
anaerobic digestion process described by a two-population model. The methodology relies on
the solution of two optimization problems: steady state optimization for determining the optimal
operating point and transient optimization. The latter is solved using the maximum principle
of Pontryagin.
The proposed control law, which drives the process from an initial state to the optimal steady
state while maximizing the biogas outflow rate, consists of switching the manipulated variable
(dilution rate) from the minimum to the maximum value and then to the optimal value at
well defined instants. This control law substantially increases the stability region of the optimal
equilibrium point, enlarging it in some cases to almost the entire state space. Aside its efficiency,
the strategy is also characterized by simplicity, being thus appropriate for implementation in
real-life systems. Another important advantage is its generality: this technique may be applied to
any anaerobic digestion process, for which the acidogenesis and methanogenesis are respectively
characterized by Monod and Haldane kinetics.

Keywords: biotechnology, nonlinear systems, stability analysis, optimal control, bang-bang
control

1. INTRODUCTION

Anaerobic digestion has gained considerable importance
lately, being the most encountered process for the biologi-
cal treatment of wastewater and biogas production. Com-
pared to the aerobic treatment, the anaerobic digestion
provides several advantages among which the higher en-
ergy production and the substantially lower sludge produc-
tion are the most important ones. In terms of process sta-
bility, anaerobic digestion still lags behind aerobic biolog-
ical treatment or physico-chemical processes. Substantial
expertise is required to operate such a process properly.
From a biological point of view, the main cause of the
anaerobic digestion failure is the imbalance between the
acid forming bacteria and the methane forming bacteria.

Many control strategies for anaerobic digestion processes
have been proposed in the literature, which aim to either
regulate the organic pollution level or to optimize the
production of the methane gas. The most popular ones are
robust output feedback control ( Mailleret et al. (2003);
Antonelli et al. (2003); Méndez-Acosta et al. (2010))
and adaptive control ( Mailleret et al. (2004); Marcos
et al. (2004); Dimitrova and Krastanov (2009)). Steyer
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et al. (2006) have reviewed a number of control strategies
for anaerobic digestion systems and have concluded that
neither the classical nor the advanced control methods
have succeeded in overcoming all the difficulties which
arise in the efficient operation of these processes.

More efficient and less complex control laws may be
derived by exploiting the insight gained from a thorough
analysis of system dynamics. This provides useful guidance
for process operation and control (e.g. the methodology of
detecting hazardous working modes developed by Hess and
Bernard (2008, 2009)). This paper presents a methodology
for the optimization of biogas production in anaerobic
digestion systems. The control law is found by solving
steady state and transient optimization problems and
consists of switching the dilution rate from minimum
to maximum and then to the optimal values at well
determined time instants. The procedure is simplified by
using one of the system stability boundaries as switching
surface. In this way the optimal equilibrium state is
reachable from almost the entire state space of the system.
Aside its efficiency and simplicity, the method may be
applied to any anaerobic digestion process, described by
a two-population model, in which the acidogenesis and
methanogenesis are respectively characterized by Monod
and Haldane kinetics.
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2. PROCESS DESCRIPTION

Throughout this paper, an anaerobic digestion model is
considered, in which the biological transformations are
given by the following reaction network:

aξ1 → cξ2 + ξ3 (1)

dξ2 →CH4 + ξ4

In the first reaction, the acidogenic bacteria ξ3 grow on the
organic substrate ξ1 and produce volatile fatty acids ξ2. In
the second reaction, the methanogenic bacteria ξ4 use the
volatile fatty acids as substrate for growth and produce
methane. When operating the anaerobic digestion process,
a balance between the acidogenesis and methanogenesis
must be maintained.

For an ideal continuous stirred tank reactor, the system
dynamics described by the reaction network (1) are given
by the following differential equations:

ξ̇1 = u(ξin1
− ξ1) − ar1(ξ) (2)

ξ̇2 = u(ξin2
− ξ2) + cr1(ξ) − dr2(ξ) (3)

ξ̇3 =−uξ3 + r1(ξ) (4)

ξ̇4 =−uξ4 + r2(ξ) (5)

while the outflow rate of methane gas reads:

Q(ξ) = qµ2(ξ2)ξ4 (6)

In equations (2)-(6), u represents the dilution rate and
ξin1

, ξin2
respectively represent the concentrations of or-

ganic substrate and of volatile fatty acids in the influent.
a, c, d > 0 are the stoichiometric coefficients. q > 0 is the
yield for the methane production. ξ = [ ξ1 ξ2 ξ3 ξ4 ]

′
∈

R
+4

denotes the state vector. The reaction rates r1(ξ),
r2(ξ) read:

r1(ξ) = µ1(ξ1)ξ3 r2(ξ) = µ2(ξ2)ξ4 (7)

where the growth functions are respectively of Monod and
Haldane type

µ1(ξ1) = µm1

ξ1

Ks1
+ ξ1

(8)

µ2(ξ2) = µm2

ξ2

Ks2
+ ξ2 +

ξ2

2

Ki2

(9)

Table 1 gives the numerical values/ranges for the anaerobic
digestion model parameters and input variables, used for
the simulation results.

Table 1. Numerical values/ranges of the anaer-
obic digestion model parameters and input

variables (as in Bernard et al. (2001))

a 42.14 Ks1
7.1 g/l

c 116.5 mmole/g Ks2
9.28 mmole/l

d 268 mmole/g Ki2 256 mmole/l

q 453 mmole/g ξin1

[
0 50

]
g/l

µm1
1.2 day−1 ξin2

[
0 200

]
mmole/l

µm2
0.74 day−1 u

[
0 1.5

]
day−1

By considering a partition of the state vector of the form
ξ = [ ξa ξb ]

′
, where ξa = [ ξ3 ξ4 ]

′
and ξb = [ ξ1 ξ2 ]

′
, and

a linear transformation of the states xa = ξa, xb = ξb −

CbC
−1
a ξa, a canonical state space representation of the

anaerobic digestion system can be obtained (Bastin and
Dochain (1990)):

ẋa = u(wa − xa) + Caρ(x) (10)

ẋb = u(wb − xb) (11)

with

xa
∆
=

[
x3

x4

]

∈ R
+2

; xb
∆
=

[
x1

x2

]

∈ R
2;

Ca = I2; Cb =

[
−a 0
c −d

]

;

ρ(x)
∆
=

[
ρ1(x)
ρ2(x)

]

∈ R
+2

;

ρi(x) = ri(ξ)|ξa=xa; ξb=xb+CbC−1

a xa
, i = 1, 2

wa =

[
w3

w4

]

∆
=

[
0
0

]

; wb =

[
w1

w2

]

∆
=

[
ξin1

ξin2

]

∈ R
+2

The canonical model consists of a nonlinear part of dimen-
sion 2 dynamically coupled with a linear part of dimension
2. To preserve the positiveness property of the original
system, physical boundary conditions are imposed, which
define the state space of the canonical model as:

Sx =
{
x ∈ R

4; ξ1 = x1 − ax3 ≥ 0; ξ2 = x2 + cx3 − dx4 ≥ 0

ξ3 = x3 ≥ 0; ξ4 = x4 ≥ 0}

A detailed analysis of this model has been performed
by Sbarciog et al. (2010a). For the development of the con-
trol strategy, the main properties of the system are summa-
rized here. The anaerobic digestion system (10), (11) has
bounded solutions and is a non-oscillatory system. This
means that the set of equilibria is globally convergent:
as time increases every system solution converges to an
equilibrium point. The equilibria are the solutions of

x1 = w1 = ξin1
(12)

x2 = w2 = ξin2
(13)

[−u + µ1(ξ1)]x3 = 0 (14)

[−u + µ2(ξ2)]x4 = 0 (15)

All equilibria lie on the plane

∆ = {x ∈ Sx; x1 = w1, x2 = w2}

The number of physical equilibrium points and their
stability properties depend on the magnitude of dilution
rate u and of concentrations in the influent of organic
substrate ξin1

and volatile fatty acids ξin2
.

The equilibrium equations (14), (15) lead to several possi-
bilities:

(i) x3 = 0 and x4 = 0
This defines the equilibrium point A.

(ii) x4 = 0 and µ1(ξ1) = u

This defines the equilibrium point B, where ξ̂1,B is the
unique solution of

µ1(ξ1) = u (18)

(iii) x3 = 0 and µ2(ξ2) = u
This defines the equilibria C and D, generically denoted

by M , where ξ̂2,C and ξ̂2,D (with ξ̂2,C < ξ̂2,D) are the
two solutions of

µ2(ξ2) = u (19)
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ξin2
+ c

a
ξin1

ξ̃in2
+ c

a
ξ̃in1

ξin2
ξ̃in2

ξin1
ξ̃in1

µ1(ξ1)

µ̃1

u

GI

GII

µ̃2

u

HI

HII

HIII

µ2(ξ2)

ξ̃2

µ2(ξin2
+ c

a
ξin1

)

µ1(ξin2
+ c

a
ξin1

)

JIII

JII

JI

µ̃2

µ̃1

u

ū

Fig. 1. Relationship between the dilution rate u and concentrations of components in the influent ξin1
, ξin2

determining
a different number of equilibrium points: the regions are bounded by continuous lines

Table 2. The analytical expressions of the
system equilibria

Canonical states Physical states

x̂A =





w1

w2

0
0



 ξ̂A =





ξin1

ξin2

0
0





x̂B =






w1

w2

1

a
(w1 − ξ̂1,B)

0




 ξ̂B =







ξ̂1,B

ξin2
+

c

a
(ξin1

− ξ̂1,B)

1

a
(ξin1

− ξ̂1,B)

0







x̂M =






w1

w2

0
1

d
(w2 − ξ̂2,M )




 ξ̂M =







ξin1

ξ̂2,M

0
1

d
(ξin2

− ξ̂2,M )







; M = C, D

x̂N =






w1

w2

1

a
(w1 − ξ̂1,N )

x̂4,N




 ξ̂N =







ξ̂1,N

ξ̂2,N
1

a
(ξin1

− ξ̂1,N )

ξ̂4,N







; N = E, F

x̂4,N =
1

d

[

w2 − ξ̂2,N +
c

a
(w1 − ξ̂1,N )

]

(16)

ξ̂4,N =
1

d

[

ξin2
− ξ̂2,N +

c

a
(ξin1

− ξ̂1,N )

]

(17)

(iv) µ1(ξ1) = u and µ2(ξ2) = u
This defines the equilibria E and F , generically denoted

by N , where ξ̂1,E = ξ̂1,F is the solution of (18) and ξ̂2,E

and ξ̂2,F (with ξ̂2,E < ξ̂2,F ) are the solutions of (19).

Table 2 presents the analytical expressions of the equi-
librium points in the canonical states respectively in the
physical states, while Fig. 1 presents regions in the spaces
(ξin1

;u), (ξin2
;u) and

(
ξin2

+ c
a
ξin1

;u
)

corresponding to
the occurrence of physical equilibrium points. The total

wash out of the system x̂A (ξ̂A) is always a physical

equilibrium point. x̂B (ξ̂B), characterized by the wash out
of methanogenic bacteria, is physical if (ξin1

, u) ∈ GII .

The two equilibria x̂M (ξ̂M ), characterized by acidogenic
bacteria wash out, are respectively physical if (ξin2

, u) ∈
HII ∪HIII for M = C and (ξin2

, u) ∈ HIII for M = D.

The two equilibria x̂N (ξ̂N ), characterized by the presence
of both bacteria type, are physical if (ξin1

, u) ∈ GII and
respectively

(
ξin2

+ c
a
ξin1

, u
)
∈ JII ∪ JIII for N = E

and
(
ξin2

+ c
a
ξin1

, u
)
∈ JIII for N = F . The stability of

equilibria has been assessed via the linearization principle
(see Sbarciog et al. (2010a)). The following characteris-
tics are useful for the further development of the control
strategy:

• x̂E is always locally asymptotically stable;
• x̂F is always unstable;
• x̂B is locally asymptotically stable in the region where

x̂F is physical (i.e. JIII) and unstable in the region
where x̂F is not physical (i.e. JII).

Usually in practice only the dilution rate u can be manip-
ulated, therefore in what follows the inlet concentrations
ξin1

and ξin2
are considered fixed and set respectively to

the values ξ̃in1
= 40 g/l and ξ̃in2

= 175 mmol/l for the
simulation results.

3. OPTIMIZATION

The control purpose is to optimize the outflow rate of
methane (6) by manipulating the dilution rate u, with
u ∈ [umin, umax]. The numerical values of umin and
umax are selected based on a number of considerations
discussed in the next section. During the transient an
optimal production of biogas is pursued, possibly taking
into account some costs (e.g. minimize the work of the
actuator). At the end of the transient period the process
should reach a steady state in which the outflow rate of
biogas is maximum. Hence the control strategy proposed
in this section performs transient as well as steady state
optimization.

3.1 Steady state optimization

The steady state optimization problem is defined as fol-

lows: Find the optimal setpoint x̂s (ξ̂s) and the correspond-
ing optimal dilution rate us for which the outflow rate of

methane Q(ξ̂s) is maximum.

The analysis summarized in the previous section shows
that the only technologically meaningful equilibrium
points are x̂E and x̂F . Both are characterized by methane
production. It is easy to see however, that the flow rate

of methane produced in ξ̂E is higher than the flow rate of

methane produced in ξ̂F (µ2(ξ̂2,E) = µ2(ξ̂2,F ) = u and ac-

cording to (17), ξ̂4,E > ξ̂4,F because ξ̂2,E = ξ̂2,C < ξ̂2,F =

ξ̂2,D). Consequently, the optimal setpoint is an equilibrium
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point of type E. Thus, in the optimal equilibrium point ξ̂s

the flow rate of methane is given by

Q(ξ̂s) = qµ2(ξ̂2,s)
1

d

[

ξin2
− ξ̂2,s +

c

a
(ξin1

− ξ̂1,s)
]

(20)

Calculating
dQ

dξ2

∣
∣
∣
∣
ξ2=ξ̂2,s

= 0 leads to

[

ξin2
− ξ̂2,s +

c

a
(ξin1

− ξ̂1,s)
]

· µ2d
(ξ̂2,s)−

µ2(ξ̂2,s)

(

1 +
c

a

dξ1

dξ2

∣
∣
∣
∣
ξ2=ξ̂2,s

)

= 0 (21)

where
dξ1

dξ2

∣
∣
∣
∣
ξ2=ξ̂2,s

results from

µ1d
(ξ̂1,s)

dξ1

dξ2

∣
∣
∣
∣
ξ2=ξ̂2,s

= µ2d
(ξ̂2,s) (22)

with µ2d
denoting the derivative of µ2 w.r.t. ξ2 and µ1d

denoting the derivative of µ1 w.r.t. ξ1.

Recall that the optimal setpoint is a type E equilibrium
point where

µ1(ξ̂1,s) = µ2(ξ̂2,s) = us (23)

Then (21) and (23) provide sufficient conditions to fully

determine the optimal equilibrium point ξ̂s and the opti-
mal dilution rate us.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x
3

x
4

x̂
us
B

x̂A

W s(x̂us
F

)

x̂
us
F

x̂
us
D

x̂
us
C

x̂s

Fig. 2. The phase portrait on the ∆ plane of the system
operated with the dilution rate us

Fig. 2 presents the phase portrait on the ∆ plane of
the system operated with the optimal dilution rate us

(the superscript in the notation of equilibria indicates the
dilution rate). The optimal setpoint x̂s may be reached
only if the initial state of the system lies above the stability
boundary W s(x̂us

F ) (represented with a dashed line), which
delimits the region of attractions of the optimal setpoint
x̂s (Ω(x̂s)) and of the acidification point x̂us

B (Ω(x̂us

B )).

3.2 Transient optimization

The transient optimization problem is formulated as a free
final time optimal control problem of the form: Find the
dilution rate u(t) ∈ [umin, umax] which drives, in finite
time, the system (10), (11) from an initial state at time

t = 0 to a small neighbourhood S of the steady state
optimal equilibrium point x̂s, while minimizing a cost index
of the form

J(D) =

∫ tf

0

[α1u − Q] dt =

∫ tf

0

[α1u − qµ2(ξ2)ξ4] dt

(24)
where tf represents the final time of the control interval
and α1 is a weighting coefficient. As soon as the system
state reaches the neighbourhood S (target set) the control
effort is switched to u = us, which ensures the convergence
to the optimal steady state for t → +∞. The target set is
generically defined as

S = {x ∈ Sx; θ(x) = 0} (25)

where θ(x) is a function of system states. Indications
regarding its choice are given below.

The transient optimization is a classical optimal control
problem, which can be solved using Pontryagin’s max-
imum principle. Consequently, minimizing the cost in-
dex (24) is equivalent to maximizing the Hamiltonian,
which is linear in the control input

H =

[

α1 +

4∑

i=1

pi(wi − xi)

]

︸ ︷︷ ︸

s1(x, p)

u +

p3µ1(ξ1)x3 + (p4 − q)µ2(ξ2)x4
︸ ︷︷ ︸

s2(x, p)

(26)

p = [ p1 p2 p3 p4 ]
′
is the costate vector, where

ṗi = −
∂H

∂xi

, i = 1 . . . 4 (27)

and the transversality conditions are
[(

∂θ

∂x

)′

λ − p

]

t=tf

= 0 (28)

where λ denotes the Lagrange multipliers.

Hence by the maximum principle, if in an interval (t1, t2):

s1(x, p) > 0⇒ u(t) = umin for t1 < t < t2 (29)

s1(x, p) < 0⇒ u(t) = umax for t1 < t < t2 (30)

s1(x, p) = 0⇒ (t1, t2) is a singular interval (31)

Similarly to Sbarciog et al. (2008), it can be shown that
singular intervals cannot occur, because ṡ1(x, p) < 0.
Hence it may be concluded that:

• the optimal control strategy is of the bang-bang type
with at most one switching, from umin to umax;

• in the state space of system (10), (11) there exists a
switching surface s1(x) = 0 such that for x /∈ S:

s1(x) > 0⇒ u = umin

s1(x) < 0⇒ u = umax

• for x ∈ S, u = us.

The switching surface s1(x) = 0 depends on the choice of
the target set S and on the weighting parameter α1 in the
cost index. Its determination requires the solution of a set
of nonlinear canonical differential equations (10), (11), (27)
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with split boundary conditions (initial conditions at t = 0,
final conditions and transversality conditions at t = tf ),
which generally constitute a difficult numerical problem
(see Banga et al. (2005) and references therein). In order
to avoid this issue the switching is chosen to take place on
a heuristically selected switching surface.

Selecting an appropriate target set and switching surface
by trial-and-error may be a time consuming task, due
to the numerous conditions the switching surface must
satisfy. These conditions have to be checked by simulation.
Sbarciog et al. (2008) suggested to switch the dilution rate
from the minimum to the maximum allowable values once
the system trajectory reaches the stability boundary of
the system nominal operating point corresponding to the
maximum dilution rate, that is ∂Ω(x̂umax

E ) = W s(x̂umax

F ).

A detailed description of estimating the stability boundary
for the anaerobic digestion model (10), (11) can be found
in Sbarciog et al. (2010b). A simple choice for the target
set is an ellipsoid or ball with the center at the optimal
setpoint x̂s and radius such that x̂umax

E lies inside the
target set.

4. DISCUSSION AND SIMULATION RESULTS

The control strategy described in the previous section
indicates that the system must be operated with the
dilution rate umin until the switching surface W s(x̂umax

F )
is reached. Then, u = umax and the system is operated
with the new dilution rate until it enters the target set S.
Once inside the target set, the dilution rate is switched
to the optimal dilution rate us and the system will settle
down in the optimal equilibrium point x̂s.

For the parameter values given in Table 1 and ξin1
= ξ̃in1

,

ξin2
= ξ̃in2

, steady state optimization leads to the optimal
dilution rate us = 0.5179 day−1 and the corresponding
optimal equilibrium point

x̂s = [ 40 175 0.82 0.9 ]
′

ξ̂s = [ 5.39 29.65 0.82 0.9 ]
′

This means that (ξin1
, us) ∈ GII , (ξin2

, us) ∈ HIII ,(
ξin2

+ c
a
ξin1

, us

)
∈ JIII , case in which all six equilibria

are physical.

θ(x3, x4) = (x3 − x3,s)
2
/r2

x + (x4 − x4,s)
2
/r2

y − 1 = 0

is the target set, with rx = 0.015, ry = 0.07.

While us is the solution of the steady state optimization
problem, the minimum and maximum dilution rates umin

and umax must be selected according to the system char-
acteristics and technological considerations. Below, the
selection of umin and umax based on the system character-
istics is presented, technological considerations will be de-
tailed elsewhere. Consequently, the maximum dilution rate
umax > us must be chosen such that x̂umax

E and x̂umax

F are
physical equilibrium points, which means that umax < µ̃2

(see Fig. 1). Values of umax higher than µ̃2 =
µm2

1+2

√
Ks2
Ki2

correspond to situations in which there is no production
of biogas. Here, umax = 0.535 day−1 (µ̃2 = 0.536) and the
same situation as for us, characterized by the maximum
number of physical equilibrium points, is obtained.

With regard to the minimum dilution rate umin < us, two
alternatives may be possible: umin ≥ ū and umin < ū (see

Fig. 1). ū is the dilution rate for which ξ̂2,N + c
a
ξ̂1,N =

ξ̃in2
+ c

a
ξ̃in1

and can be computed from (18) and (19). For

the parameter values given in Table 1, ū = 0.3495 day−1.
Simulation results are presented below for both situations:

(1) umin ≥ ū
This case corresponds to (ξin1

, umin) ∈ GII ,
(ξin2

, umin) ∈ HIII ,
(
ξin2

+ c
a
ξin1

, umin

)
∈ JIII

(see Fig. 1), hence both x̂umin

E and x̂umin

F are physical
equilibrium points. Thus the number of equilibria of
the controlled system does not change with switching
the dilution rate. Fig. 3 shows the phase portrait on
the ∆ plane of the controlled system. The minimum
dilution rate has been chosen as umin = 0.38 day−1.
Triangles, squares and circle respectively represent
the equilibria corresponding to umin, umax and us.
Dashed lines represent the system stability bound-
aries W s(x̂umin

F ) and W s(x̂umax

F ). It is worth to notice
the enlargement of the attraction region of the op-
timal equilibrium point compared to the one shown
in Fig. 2: now Ω(x̂s) equals the attraction region
of x̂umin

E . Hence, any system trajectory starting in
an initial state lying above W s(x̂umin

F ) reaches the
optimal setpoint x̂s.
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Fig. 3. The phase portrait on the ∆ plane of the controlled
system (case 1)

(2) umin < ū
This case corresponds to (ξin1

, umin) ∈ GII ,
(ξin2

, umin) ∈ HII ,
(
ξin2

+ c
a
ξin1

, umin

)
∈ JII ,

where the system possesses four physical equilibria:
x̂umin

A , x̂umin

B , x̂umin

C , x̂umin

E . Only x̂umin

E is locally
asymptotically stable: every trajectory starting in
an initial state characterized by the presence in the
reactor of both bacteria type (x3 > 0, x4 > 0) will
converge to it.

A question that may be raised in this case is
whether or not the change in the structure of the
phase portrait imposes additional constraints on the
magnitude of umin. As in the previous case, in order
to be able to switch the dilution rate when the system
trajectory hits the stability boundary W s(x̂umax

F ),
x̂umin

E must lie in Ω(x̂umax

E ). Otherwise, the system
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settles down in x̂umin

E and the optimal setpoint will
not be reached. It may be checked however, that
irrespective of the choice of umin, this will not be
the case: since all equilibria lie on the plane ∆, it
is easy to show (based on the analytical expressions
of the equilibria from Table 2) that x̂umin

E lies above
W s(x̂umax

F ).
Fig. 4 shows the phase portrait on the ∆ plane

of the controlled system. The minimum dilution rate
has been chosen as umin = 0.3 day−1. The optimal
equilibrium point x̂s can be reached now from any
initial state characterized by the presence in the
reactor of both bacteria type. Hence x̂s is quasi-
globally asymptotically stable.
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Fig. 4. The phase portrait on the ∆ plane of the controlled
system (case 2)

5. CONCLUSION

In this paper a control strategy for optimizing the biogas
production in anaerobic digestion systems has been pre-
sented. The procedure consists of steady state optimiza-
tion as well as transient optimization. A simple control
law has been derived: the system must be operated with
the minimum dilution rate umin until the switching surface
is reached, then it must be operated with the maximum
dilution rate umax until it enters a small neighbourhood
of the optimal equilibrium point where the dilution rate
is changed to us. The proposed control strategy enlarges
considerably the region of attraction of the optimal equilib-
rium point, which for some values of the minimum dilution
rate umin becomes quasi-globally asymptotically stable.

To avoid the tremendous simulation work required for
the selection of an appropriate switching surface, one of
the system stability boundaries is used to switch the
dilution rate from umin to umax. This boundary can be
accurately estimated using algorithms that involve a low
computational effort.

The proposed technique may be applied to any anaerobic
digestion system, taking place in a bioreactor operated
in continuous mode and described by a two-population
model, in which the acidogenesis and methanogenesis are
respectively characterized by Monod and Haldane kinetics.
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